Last updated on 15 August 2018

SUMMARY

SUMMARY

IDENTIFICATION

SCIENTIFIC NAME(s)

Gadus morhua

SPECIES NAME(s)

Atlantic cod

COMMON NAMES

Barents Sea cod, Northeast Arctic cod, Norwegian-Russian cod, NE Arctic cod

Genetic studies support the distinctness of different populations in the Atlantic Ocean (Bradbury et al. 2013), being two stocks identified in the Barents Sea: NE Arctic and Norwegian coastal waters. There is some overlap over the spawning season in the Norwegian coast but the stocks are assessed by ICES separately as following: Cod in Subareas I and II (Northeast Arctic cod) and Cod in Subareas I and II (Norwegian coastal waters cod). Haddock and saithe are also targeted in this fishery.


ANALYSIS

Strengths
  • The stock assessment process incorporates many best practices features.
  • Scientific advice is consistent with the management plan, which is regularly revised and found to be in accordance to the Precautionary Approach by ICES, such as the harvest control rule.
  • Stock biomass is following a decreasing trend but remains in a good condition.
  • Catches have been below the set TAC. Illegal, unreported and unregulated fishing is considered to have been effectively addressed. Unreported landings are considered zero since 2009.
  • Even if not included in the current assessment, bycatch and discarding time series are being updated.  
  • There are several management measures in place: spatial, temporal and closures for the protection of juveniles; technical measures in the fishing measures and also control measures.Some are harmonized within Russian and Norwegian EEZ waters.
  • Previous concerns with the interaction of the Russian longline fleet with wolffish are currently addressed.
  • The project MAREANO and other annual trawl ecosystem surveys have been providing a deeper knowledge of the Barents Sea, which is considered as one of the best known ecosystems in the world. Sensitive species and habitats’ composition have been determined spatially. Some sensitive areas are identified.
  • Longlines, hooks and lines and gillnets are considered to not cause irreversible harm to the seabed habitat, in temporal and spatial terms.
Weaknesses
  • Several issues – related to survey coverage, catch-at-age data and catches' sampling - contribute to uncertainties in the assessment, especially on the spawning stock and recruitment estimates.
  • Fishing mortality has been increasing and is currently at the target. The spawning stock has been showing a decreasing trend.
  • The agreed catch limit for 2018 is above the scientific recommendation, like has been happening in the past 3 years. ICES highlights the TAC is not established in accordance to the Harvest Control Rule in place.
  • Discarding levels are unknown but assumed to be negligible, below 5%. Estimates are contradictory and fragmented.
  • There is bycatch of depleted species, such as golden redfish., of particular concern; this fishery is estimated to contribute to a significant share of total golden redfish catches, especially by trawls, and considered by ICES to be far above any sustainable catch level.
  • Interaction with harbour porpoise happens in the gillnet fishery but is not totally quantified.
  • Trawls are known to impact the hard bottom habitat and the impacts are not well studied.

FISHSOURCE SCORES

Management Quality:

Management Strategy:

8.1

Managers Compliance:

8.6

Fishers Compliance:

10

Stock Health:

Current
Health:

10

Future Health:

8


RECOMMENDATIONS

RETAILERS & SUPPLY CHAIN
  • Press regulators to set the catch limit in line with the agreed harvest control rule.
  • Make urgent further efforts (e.g. via additional technical conservation measures) to reduce the bycatch of golden redfish and coastal cod.
  • Implement an at-sea monitoring programme to improve data on protected, endangered, and threatened species interactions.
  • Participate in the ongoing efforts to investigate impacts of bottom trawls on the soft-bottom habitat of the Barents Sea.

    FIPS

    No related FIPs

    CERTIFICATIONS

    • Barents Sea cod, haddock and saithe:

      MSC Recertified

    • FIUN Barents & Norwegian Seas cod and haddock:

      MSC Certified

    • Russian Federation Barents sea cod and haddock:

      MSC Certified

    • Arkhangelsk Trawl fleet Norwegian and Barents Seas cod & haddock fishery:

      MSC Certified

    Fisheries

    Within FishSource, the term "fishery" is used to indicate each unique combination of a flag country with a fishing gear, operating within a particular management unit, upon a resource. That resource may have a known biological stock structure and/or may be assessed at another level for practical or jurisdictional reasons. A fishery is the finest scale of resolution captured in FishSource profiles, as it is generally the scale at which sustainability can most fairly and practically be evaluated.

    ASSESSMENT UNIT MANAGEMENT UNIT FLAG COUNTRY FISHING GEAR
    Barents Sea Norway/Russia Faroe Islands Bottom trawls
    Single boat bottom otter trawls
    Twin bottom otter trawls
    France Single boat bottom otter trawls
    Germany Single boat bottom otter trawls
    Greenland Bottom trawls
    Single boat bottom otter trawls
    Iceland Single boat bottom otter trawls
    Norway Bottom trawls
    Danish seines
    Gillnets and entangling nets
    Hooks and lines
    Longlines
    Poland Bottom trawls
    Russian Federation Bottom trawls
    Longlines
    Single boat bottom otter trawls
    Spain Bottom trawls
    Single boat bottom otter trawls
    United Kingdom Single boat bottom otter trawls

    Analysis

    OVERVIEW

    Last updated on 15 August 2018

    Strengths
    • The stock assessment process incorporates many best practices features.
    • Scientific advice is consistent with the management plan, which is regularly revised and found to be in accordance to the Precautionary Approach by ICES, such as the harvest control rule.
    • Stock biomass is following a decreasing trend but remains in a good condition.
    • Catches have been below the set TAC. Illegal, unreported and unregulated fishing is considered to have been effectively addressed. Unreported landings are considered zero since 2009.
    • Even if not included in the current assessment, bycatch and discarding time series are being updated.  
    • There are several management measures in place: spatial, temporal and closures for the protection of juveniles; technical measures in the fishing measures and also control measures.Some are harmonized within Russian and Norwegian EEZ waters.
    • Previous concerns with the interaction of the Russian longline fleet with wolffish are currently addressed.
    • The project MAREANO and other annual trawl ecosystem surveys have been providing a deeper knowledge of the Barents Sea, which is considered as one of the best known ecosystems in the world. Sensitive species and habitats’ composition have been determined spatially. Some sensitive areas are identified.
    • Longlines, hooks and lines and gillnets are considered to not cause irreversible harm to the seabed habitat, in temporal and spatial terms.
    Weaknesses
    • Several issues – related to survey coverage, catch-at-age data and catches' sampling - contribute to uncertainties in the assessment, especially on the spawning stock and recruitment estimates.
    • Fishing mortality has been increasing and is currently at the target. The spawning stock has been showing a decreasing trend.
    • The agreed catch limit for 2018 is above the scientific recommendation, like has been happening in the past 3 years. ICES highlights the TAC is not established in accordance to the Harvest Control Rule in place.
    • Discarding levels are unknown but assumed to be negligible, below 5%. Estimates are contradictory and fragmented.
    • There is bycatch of depleted species, such as golden redfish., of particular concern; this fishery is estimated to contribute to a significant share of total golden redfish catches, especially by trawls, and considered by ICES to be far above any sustainable catch level.
    • Interaction with harbour porpoise happens in the gillnet fishery but is not totally quantified.
    • Trawls are known to impact the hard bottom habitat and the impacts are not well studied.
    RECOMMENDATIONS

    Last updated on 24 September 2018

    Recommendations to Retailers & Supply Chain
    • Make urgent further efforts (e.g. via additional technical conservation measures) to reduce the bycatch of golden redfish and coastal cod.
    • Implement an at-sea monitoring programme to improve data on protected, endangered, and threatened species interactions.
    • Participate in the ongoing efforts to investigate impacts of bottom trawls on the soft-bottom habitat of the Barents Sea.
    • Press regulators to set the catch limit in line with the agreed harvest control rule.

      1.STOCK STATUS

      STOCK ASSESSMENT

      Last updated on 10 August 2018

      The annual stock assessment uses state-of-the-art techniques, is carried out by a working group of leading scientists and provides concise advice to managers; all data and methods, the process and results are transparent and publicly available online, and have been peer reviewed. Last benchmark was undertaken in April 2017, an age-based analytical assessment (State-space Assessment Model, SAM) is currently used. It replaced the previous Extended Survivors’ Analysis model, XSA; the recruitment model was also changed (ICES 2017)​.

      Input data includes commercial catches (e.g., international landings, ages and length frequencies from catch sampling); four survey indices performed in different times of the year, and correspondent annual maturity data; natural mortalities from annual stomach sampling. Bycatch is included in the assessment model. Discarding is not included as it is likely negligible (below 5%) and not considered to "change perception on NEA cod stock size"; estimates are besides fragmented and contradictory. Bycatch and discards time series are currently being updated but were not included in this year's assessment (ICES 2018). Assessment includes data from 1946 to present. Estimates of cod cannibalism, that now cover more years (period before 1984 is now included), are included in the natural mortality, changing historical recruitment and total stock biomass estimates. Large uncertainties are encountered in recruitment estimates, SSB as well as "conflicting signals from the different surveys and catch-at-age data". In addition, catch split in sampling of trawl catches of cod in the first half of the year in parts of Division 2.a is not considered adequate; coastal cod and NE Arctic stocks may be misidentified (ICES 2018)

      SCIENTIFIC ADVICE

      Last updated on 10 August 2018

      ICES’ ACOM (Advisory Committee) issues advice for this fishery. Norway’s Institute of Marine Research (IMR) and Russia’s Polar Research Institute of Marine Fisheries and Oceanography (PINRO) provide much of the basis for the scientific advice, through annual cod surveys and cooperation in data collection and research programmes (Lockwood et al., 2010). ICES’ advice for 2019 is as follows for all scenarios (ICES 2018):

      Management plan (MP): According to the agreed MP, catches in 2019 should not exceed 674,678 tonnes (F2019=0.46). Under this catch scenario, the Spawning Stock Biomass (SSB) is expected to be at 1005,533 tonnes in 2020.

      ICES evaluated the management plan and its later amendment in 2010 – when the Joint Norwegian-Russian Fisheries Commission (JRNFC) decided to use the plan for more 5 years before a next evaluation – and found it to be consistent with the Precautionary Approach (PA) (ICES, 2015a,b). In 2016, JRNFC requested ICES to evaluate ten alternative harvest control rules (one of which is the existing harvest control rule) and all proposals are considered as precautionary (ICES 2016)(ICES 2016).

      MSY approach: The MSY approach implies fishing at FMSY (=0.4), corresponding to catches in 2019 of no more than 605,331 tonnes. Under this scenario, SSB is expected to remain at 1059,787 tonnes in 2020.

      Other recommendations: Bycatch of coastal cod and golden redfish Sebastes norvegicus should be kept as low as possible (ICES 2018). Coastal cod's stock size has been well below the biomass rebuilding threshold set in the rebuilding plan and fishing pressure increased in the last three years (ICES 2018). On the other hand, the stock size of golden redfish has been decreasing and is currently at the historical minimum, below both biological reference points; fishing pressure is above the FMSY. The species is mainly bycaught (direct fishery is conditioned), representing Norway and Russia 87% of total removals in 2017 (of 5,340 tonnes). In 2017 bycatch is preliminary at 64% by trawls (increasing from last years), 18% by gillnets and 15% by longlines (ICES 2018)(ICES 2018).

      Norway/Russia

      Last updated on 15 August 2018

      The partnership between Norway and Russia, under the JCNRFC, has improved all over the years, in terms of species analysed, expanding the scope of the assessments performed to understand the status of various species of the trophic chain (and not only commercial species as in the beginning) and of the ecosystem as a whole. The Ecosystem Approach is now a reality and "major fish stocks in the area are now at a high level". ICES plays an important role too, "in practice functioning as an international peer review body" and being an intermediary entity "between science and policy" as an advisory committee. Management decisions are much more informed, promoting the sustainable management and use of living marine resources (Hammer and Hoel 2012)

      CURRENT STATUS

      Last updated on 10 August 2018

      The stock remains in its full reproductive capacity in 2018 with SSB at 1,485,912 tonnes, above Bpa = MSY Btrigger (460,000 tonnes) and Blim (220,000 tonnes), as since 2002. It is although following a decreasing trend since 2013, when the maximum peak was attained (2,662,000 tonnes). F has been increasing since 2012 and in 2017 was at 0.4, what equals MSY levels but still below Flim (0.74). "Abundance of age 3–7 fish in 2017 was increased compared to last year, while the abundance of older age groups was decreased" (ICES 2018). Catches in 2017 were estimated at 868,276 tonnes (ICES 2018)(ICES 2018).

      2.MANAGEMENT QUALITY

      MANAGEMENT

      Last updated on 10 August 2018

      The management agreement for the NE Arctic cod of the Joint Norwegian-Russian Fishery Commission (JNRFC), regularly evaluated, has been considered to be in accordance with the Precautionary Approach (ICES, 2011b), like in 2016 (ICES 2017). It includes an harvest control rule (HCR) aimed at maintaining the target fishing mortality at Fpa= 0.40 unless SSB falls below Bpa, in which case F should be linearly reduced to F=0 at SSB=0 (ICES, 2013b). In October 2016, JNRFC amended the agreed management plan (together with the haddock fishery within the same area; first implemented in 2004 and amended in 2009), being now the TAC "calculated as the average catch predicted for the coming 3 years using the target level of exploitation (Ftr)" (more details here). ICES evaluated the plan and concluded that it is consistent with the PA and “not in contradiction to the MSY approach” (ICES, 2015a). As requested by JRNFC, ICES concluded that all 10 alternative HCR presented are "precautionary in accordance with the ICES standard that the annual probability of SSB falling below Blim should be no more than 5%" (ICES 2016)(ICES 2016)​.

      Fisheries authorities in Norway and Russia formally stipulate the TACs through the JNRFC and usually based it on ICES scientific recommendations. The total quota for cod is then divided between Norway, Russia and other fishing countries (JNRFC, undated). The TAC, usually released in October, was defined at 775,000 tonnes for 2018: Norway at 350,159 thousand tonnes (21,000 tonnes to coastal cod and 7,000 tonnes for research purposes), and the remaining for Russia and other countries (Government of Norway 2017). Although this represented a 13% reduction comparing to 2017, the TAC was 11% above the scientifically advised (ICES 2018). Since 2013 the TAC has been following a decreasing trend and since 2016 the TAC is set above the scientific recommendation. The Arctic Fisheries Working Group (AFWG) report considers the existence of quota swaps between years and countries as a possible reason to explain the TAC set over the scientific recommendation; for 2018 a sum of around 1,000 tonnes were transferred. It is highlighted as well that the 2018 TAC by JNRFC was not established according to the HCR in place (ICES 2018).

      Technical regulations are since 2011 harmonized within Norwegian and Russian Economic Exclusive Zones (EEZ): minimum landing size of 44 cm, maximum of 15% of allowable catch of fish below the minimum size (combined for cod, haddock and saithe in the Norwegian EEZ and cod and haddock in the Russian EEZ). A discarding ban started in 1987 only for cod and haddock and in 2009, a list identifies all species, dead or dying, that are obliged to be landed (with some exemptions) (Gullestad et al., 2015). Other regulations consist on mesh size limitations, a real-time closure system for juveniles (fishing is prohibited in areas where the proportion by number of undersized cod, haddock, and saithe combined has been observed by inspectors to exceed 15%) and other seasonal and spatial restrictions. Sorting grids are mandatory for trawl fisheries since 1997, and the minimum mesh size for bottom trawls is 130 mm for the entire Barents Sea (ICES, 2014a,b).

       
      Norway/Russia
      Russian Federation

      Last updated on 15 January 2015

      Since 2003 the Russian government introduced a fee on quota shares (that are given to companies, not to vessels), with quotas allotted for five years, based on the individual shipowner’s proven catch capacity (track record) over the last five years (Southall et al., 2010).

      The MSC certification of the FIUN Barents & Norwegian Seas cod and haddock Fishery was attributed in June 2013. The fishery takes place in the Barents and Norwegian Seas (ICES la, lb, lla and llb), within Norwegian and Russian EEZ and International waters; the target species are cod and haddock; and the fishing methods are bottom trawl and longline. One of the conditions upon certification (MSC Condition 3) was the need to involve all relevant stakeholders in the management process (Hønneland et al, 2013). In 2013, this fishery represented about 20% of the total catches.

      COMPLIANCE

      Last updated on 10 August 2018

      llegal, unregulated, and unreported (IUU) fishing used to be a problem in the past, reaching 20-25% of total catches (Stokke 2010), but is considered as negligible nowadays, mainly since 2009 (ICES 2018). It is believed as a result of a greater cooperation between Russian and Norwegian authorities, as well as EU requirements for catch certification (MFCA, 2010). Port-state measures under the NEAFC contributed as well to solve the problem (Stokke 2010). Monitoring and enforcement of regulations is conducted through Vessel Monitoring System (VMS) satellite tracking for some fleets, radio checks, inspections at sea and catches' control points while entering and leaving the EEZ (MEP, 2012; ICES, 2014a). An onboard detailed logbook is mandatory for most vessels and the majority of the fleet reports to the authorities on a daily basis (ICES, 2016b).

      Landings have been generally following the set TAC from 2012 onwards and total catches are “very close to officially reported landings” according to Norwegian-Russian analysis group (ICES, 2015b) (ICES 2018). In 2017, catch estimates at 868,000 tonnes were slightly below the set TAC at 890,000 tonnes. Discarding is forbidden in Russia and Norway; data is scarce, fragmented and may be contradictory but overall discards are likely negligible, below 5% (ICES 2017)(ICES 2018)(ICES 2018). Observer coverage is still low, but no compliance issues have been reported (Pfiffer and Sieben, 2014).

      3.ENVIRONMENT AND BIODIVERSITY

      BYCATCH
      ETP Species

      Last updated on 15 August 2018

      Harbour porpoise (Phocoena phocoena) is mainly found in the South of the polar front, in coastal waters. Even if considered as Least concern under the IUCN red list (IUCN 2008), it is under the OSPAR List of threatened and/or declining species and habitats (OSPAR Commission 2009) and the CITES (Appendix II). It is particularly sensitive to the interaction with static gears due to their characteristics (Bjørge et al. 2010). Capture by two Norwegian coastal fisheries, namely by the gillnet cod (and monkfish) fishery, is a current concern but the impact is not yet fully determined due to unreliable data (Bjørge et al. 2013)(NAMMCO 2014)(Nichols et al. 2015)(ICES 2018)

      Other concern regards the interaction of the fishery with golden redfish (Sebastes norvegicus) which is considered to be in "reduced reproductive capacity" and with fishing pressure above the Maximum Sustainable Yield. The species is mainly bycaught (direct fishery is conditioned), representing Norway and Russia 87% of total removals in 2017 (of 5,340 tonnes) when ICES recommended to keep bycatch as low as possible. In 2017 bycatch is preliminary at 64% by trawls (increasing from last years), 18% by gillnets and 15% by longlines (ICES 2018)(ICES 2018)S. norvegicus is currently classified as an Endangered species on the Norwegian Redlist according to the International Union for Conservation of Nature (IUCN) criteria (ICES, 2016b). Even if bycaught in low proportions by each of the MSC certified fleets (Hønneland et al. 2014)(Nichols et al. 2015)(Knapman et al. 2018)(Kiseleva and Nichols 2018)(Gaudian et al. 2018) there is no reliable information of the cumulative impacts of all operating fisheries with this ETP species.

      Seabirds and marine mammals have been recorded feeding both within trawl nets and apparently on fish escaping through meshes but only few bycatch of seabirds or marine mammals in otter trawls have been recorded widely. Basking shark Cetorhinus maximus (vulnerable in IUCN red list; (IUCN 2005)), porbeagle Lamna nasus (vulnerable in IUCN red list; (IUCN 2006)) and picked dogfish (spurdog) Squalus acanthias (vulnerable; (IUCN 2016)) can be caught but have to be landed or released if alive. There is also some bycatch of rays, which are generally released alive, but records are not detailed to the species level; Starry ray Amblyraja radiata (Least Concern in the region) is likely the most captured species (Hønneland et al. 2014). These and other skates/rays are occasionally caught, particularly by gillnets, but within national and international requirements (Nichols et al. 2015). Sometimes, trawl fisheries caught harp seals Pagophilus groenlandicus but the impact of this gear is considered with a low risk for bycatch of marine mammals (Gaudian et al. 2016).

      There is a strategy in place to manage and minimize the impacts of the fishery in place, both by the managing countries and ICES. All commercial fish, seabird and marine mammal populations are monitored. Real-time appropriate conservation actions can be implemented if needed. There are besides several generic measures under the Russian–Norwegian Fisheries Convention and the Norwegian management plans for the Barents Sea and Norwegian Sea to manage retained species, supported both by IMR and PINRO monitoring. With the introduction of the electronic logbook it is now obligatory to record the presence or absence of marine mammals and seabirds in the catch. There are real-time closure rules if any species exceeds threshold levels in individual catches; and regulations to safeguard aggregations of both juveniles of most species and aggregations of depleted species such as redfish, Greenland and Atlantic halibut. Where such species are taken as bycatch, there are also stringent bycatch regulations in place to minimise the risk of cryptic targeting of the species. There are also haul limits for redfish and halibut in both Russian and Norwegian EEZs. Escape grids in front of the cod end and cod end mesh sizes will affect all species. Discarding of commercial fish species is prohibited; detailed records and regular (daily) reporting of all fishing activity and catches must be maintained, and compliance with technical measures checked (Nichols et al. 2015)(Kiseleva et al. 2017). There are current efforts in place to determine the interaction and develop specific measures to mitigate the impact of the fishery with harbour porpoise (Nichols et al. 2015) and the use of pingers is already being tested (Lassen and Chaudhury 2017).

      Norway/Russia
      Russian Federation

      Last updated on 29 July 2014

      The 2010 Norwegian and Russian red lists classifies ten species of marine mammals and seventeen of seabirds in the region as Regionally Extinct, Critically Endangered, Endangered or Near Threatened (NBIC, 2010). Among the most abundant marine mammals, the Fin whale (Balaenoptera physalus) is the only listed as “Endangered” by the IUCN redlist and two other less common whale species are also protected by CITES: Sei whale (Balaenoptera borealis) and Blue whale (Balaenoptera musculus) (Southall et al., 2010).

      At the stock level, there is still insufficient information on the impact of cod fishing on Protected, Endangered and Threatened (PET) species, but no Critically Endangered species appear to be significantly impacted. In terms of this fishery specifically, bycatches of PET species of marine mammals and seabirds are considered rare. There is some bycatch of rays, which are generally released alive, but records are not detailed to the species level; Starry ray Amblyraja radiata (Least Concern in the region) is likely the most captured species. Redfish is the only fish species listed in both the Russian and Norwergian Red lists that is recorded to be captured in this fishery, but bycatch levels of this fleet are not considered relevant (Hønneland et al., 2014).

      There are programmes in place to reduce and monitor bycatch of marine mammals.

      Bottom trawls

      Last updated on 15 February 2017

      There are programmes in place to reduce and monitor bycatch of marine mammals. An MSC logbook is used onboard to report interactions with PET species (Hønneland et al., 2014).

      Other Species

      Last updated on 15 August 2018

      Both Norwegian and Russian jurisdictions require catches of species from a set list to be landed, being discarding of commercial species forbidden. The fishery is generically considered as relatively “clean” with low levels of bycatch (Southall et al. 2010) apart the mentioned interaction with ETP species.

      Bycatch data oscillates with season and fishing area. Non-target species are identified and quantified. Besides cod and haddock, the main retained species by volume is saithe (~1%). Other retained species include redfish (beaked redfish Sebastes mentella and golden redfish Sebastes norvegicus), three species of wolffish (Anarhichas spp.), American plaice (Hippoglossoides platessoides), Greenland halibut (Reinhardtius hippoglossoides), and small quantities of ling. Uncertainties can be found in skates, rays and other species that may be discarded in low quantities (Hønneland et al. 2014)(Nichols et al. 2015)(Hønneland et al. 2016)(Gaudian et al. 2016)(Knapman et al. 2018).

      Management measures such as a discard ban (both by Norwegian and Russian jurisdictions), area closures, minimum sizes, use of a larger mesh size, bycatch limits and sorting grids for trawls are in place to reduce impacts on retained bycatch species. Real-time closures along the Norwegian coast, in order to reduce the percentage of juvenile fish in catches, are implemented since 1984 (ICES 2018).

      Norway/Russia
      Russian Federation

      Last updated on 22 February 2017

      The Russian certified fisheries have conditions open regarding the retained species  (wolfish species and Golden redfish)  (Guadian et al., 2016; Hønneland and Revenga, 2016;).

      The second surveillance report of the FIUN Barents & Norwegian Seas cod and haddock certification indicated that no additional measures are needed to reduce the golden redfish bycatch but recording should be maintained. The surveillance team considers that the aggregated catch of Golden redfish by the Russian fleet was 770 tonnes for trawlers and longliners (below the previous 1,500 tonnes considered a precautionary catch) (Hønneland and Revenga, 2016).

      Bottom trawls

      Last updated on 29 July 2014

      By-catch of macrobenthos is likely and this is not included in the list that regulates discarding so can be returned to the sea. Observer programme by PINRO and MSC procedures during certification will contribute for the determination of discard levels and the consequent development of the management strategy considering the Norwegian and Russian discard bans (Southall et al., 2010). The main bycatch species that present more concerns are spotted wolffish and golden redfish. MSC condition 2 is closed for the other species (FCI, 2012).

      There is the need for an effective management strategy of retained species, being Spotted wolffish Anarhichas minor (the reference species of the wolffish group) and Golden Redfish Sebastes marinus and Deepwater redfish S. mentella of special concern due to the biological status; Greenland halibut Reinhardtius hippoglossoides and elasmobranch species are also included. Suggested actions comprise technical and management measures. All non-target and non-commercial species have been registered by the client in logbooks and a Scientific Observers Scheme. Spotted wolffish represents 11% of total catches and the stock biomass have been increasing, thus the condition was closed for this species. But in spite of an average annual bycatch of 0.1 % within regulated limits (report of the Polar Research Institute of Marine Researches and Oceanography (PINRO), ICES recommends no direct or indirect fishing due to the weak biological condition (decrease of the spawning stock and poor recruitment) of Golden Redfish (FCI, 2013).

      Research is ongoing re the use of semi-pelagic trawls to reduce capture of non-target species (Hønneland et al., 2011; FCI, 2012).

      The most important retained species in this fishery are cod (69% of total catch), haddock (27%), and saithe (3%). In terms of bycatch, it is considered a ‘relatively clean’ fishery. Rays (Rajidae family) are the most important group in terms of bycatch volumes, but records are not detailed to the species level; however, Starry ray Amblyraja radiata (Least Concern in the region) is likely the most captured species (Hønneland et al., 2014).

      HABITAT

      Last updated on 15 August 2018

      The Barents Sea and N-Norway regional scale of vulnerable marine habitats mapping are captured and available in cartography from sources such as the EU Red List of Marine Habitats, the project MAREANO, and the OSPAR 2010 database (Smith and Ríos 2018).

      Sensitive species and habitats’ composition have been determined spatially. More than 3050 benthic species are identified. Qualitative effects on the total impact of trawling on the ecosystem have been studied to some degree and the most serious effects have been demonstrated for hard bottom habitats dominated by large sessile fauna, where erected organisms such as sponges, anthozoans and corals have been shown to decrease considerably in abundance in the pass of the ground gear (Freese et al, 1999; Althaus et al., 2009). Studies by Denisenko (2001, 2005, 2007) in the Barents Sea revealed that in areas of intensive bottom fisheries there was a degradation in the overall benthic habitats, with a shift towards more opportunistic, short-lived detritus eating organisms, and considerable decrease in the benthos biomass (Southall et al. 2010). According to Denisenko (2007) the gross biomass (75-80%) of the benthic community in the Barents Sea Sea is composed by 15-20 species (Southall et al. 2010). Investigations by Fossa et al., (2002) concluded that the damage to coral reefs in Norway amounts to between 30% and 50% of the total coral area. Most obvious impact of trawling on Lophelia pertusa is the mechanical damage caused by the gear itself. The impact of trawled gear will kill the coral polyps and break up the reef structure. Impacts of trawling on soft (e.g., sandy, clay-silt) bottoms have been less studied. According to available research in sandy bottoms of high seas fishing grounds, trawling disturbances have not produced large changes in the benthic assemblages, suggesting these habitats may be resistant to trawling due to natural disturbances and large natural variability (ICES, 2014b). However, more research is needed to fully evaluate possible impacts on this type of habitats. More recently, the impacts of bottom trawling on megabenthos were examined in the Barents sea and megabenthos density and diversity (namely the sponges Craniella zetlandica and Phakellia / Axinella,  Flabellum macandrewi (Scleractinia), Ditrupa arietina (Polychaeta), Funiculina quadrangularis (Pennatulacea), and Spatangus purpureus (Echinoidea)) showed a negative relation  with fishing intensity. However, some asteroids, lamp shells, and small sponges showed a positive trend (Buhl-Mortensen et al. 2016)

      Longlines, gillnets and hooks and lines are not expected to cause irreversible harm to the seabed habitat, in temporal and spatial terms, given the characteristics of the gears. Therefore these fishing gears are not a concern (Nichols et al. 2015) (Knapman et al. 2018).

      It is wider accepted that fishing activity has been having an effect in the Barents Sea benthic habitat but there is no evidence that these changes have led to wider changes in the ecosystem functioning, losses of productivity or ecosystem services (Hønneland et al. 2016). A comprehensive review of the biotic and abiotic drivers influencing early life history dynamics of the Barents Sea cod is presented in (Ottersen et al. 2014). Experimental studies also suggest possible ocean acidification effects on cod larval survival and recruitment (Stiasny et al. 2016).

      Norway/Russia

      In general, in-depth high resolution mapping data over the Barents sea bottom habitats is still limited. The available information shows the existence of aggregations of large, non-mobile and long-lived species such as large deep-sea sponges, corals and mussel beds, which are particularly vulnerable to bottom trawling gears. According to Denisenko (2007) the gross biomass (75-80%) of the benthic community in the Barents Sea Sea is composed by 15-20 species (Southall et al. 2010). The MAREANO is giving priority to obtain relevant data and to see the ecosystem as a unity, performing seabed and benthic habitat surveys and the development of ecosystem-based management in a cooperation between Norwegian and Russian scientists. Vulnerable and valuable bottom areas are pre-identified (Mareano, 2013).

      In terms of impacts of fishing gears in the bottom habitats, trawled gears such as demersal otter trawls can seriously damage the seabed habitats, particularly hard-bottom habitats such as corals and sponges. However, available research is still insufficient to fully evaluate the impacts of this fishery in the Barents sea bottom habitats. For this specific fishery, an MSC condition was raised upon MSC certification, related with the review of recent information on sensitive benthic habitats in the fishing area (notably from the MAREANO project) and implementation of measures to reduce possible impacts (MEP, 2012). Currently, the overlap of the sensitive and fishing areas is being analyzed. Scientific observers will be onboard. Skippers have now to consult publicly available regulations before fishing operations and a protocol defines specific rules while exploring new fishing areas; to date no infringements were observed in terms of these requirements/regulations. The condition was therefore closed in the second MSC surveillance audit (Pfeiffer and Sieben, 2014).

      Eight cold-water reef marine protected areas off the Norwegian coast have been created to date, in order to mitigate the impact of fisheries on the seabed habitats in the Barents Sea (DOF, 2011). A new Norwegian regulation for the protection of vulnerable benthic habitats in Norwegian waters requires that any evidence of impacts on corals or sponges (i.e. presence in the trawl) be reported to the Directorate of Fisheries (DoF), with a move-on rule of 2 nautical miles if there is evidence of an ‘encounter’ (defined as a coral catch of 60kg or greater or a sponge catch of 800 kg or greater) (MEP, 2012). Russian coastal waters (<12 nm) from Varanger Fjord to 37 degrees E are closed to bottom trawling and purse seining in order to specifically protect benthic habitats (Hønneland et al., 2014). Norwegian and Russian scientists are also studying the use of pelagic or semi-pelagic trawls in order to minimize adverse ecosystem effects (ICES, 2014b); however, monitoring of bycatch of small cetaceans must be undertaken if their use expands (Lockwood et al., 2010).

      Russian Federation

      Last updated on 15 August 2018

      Knowledge of coral reefs in the Russian sector is not that much detailed and is thought to be much more disperse. Coastal protected areas in Russia do not cover benthic habitats or species but fishing vessels are not allowed to operate within the 12nm coastal zone, bringing protection to this area. Coastal waters (<12 nm) from Varanger Fjord to 37º E are closed to bottom trawling and purse seining in order to specifically protect benthic habitats. Most area closures (permanent and temporary) are designated to protect spawning and nursery areas of certain species (e.g., red king crab). Although not part of the OSPAR Convention, a considerable part of the Russian EEZ within the Barents Sea is covered by the OSPAR Region 1 – Arctic waters (Hønneland et al. 2014). Closed areas are defined in the Pechora Sea and around Novaya Zemlya (Cappell et al. 2015)

      Bottom trawls

      Last updated on 16 February 2017

      The MSC fishery  FIUN Barents & Norwegian Seas cod and haddock Fishery  has an open  condition  that aims to better understand and minimize the impact of the fishery on the seabed ecosystem, safeguarding habitat structure and function. Efforts are in place to gather additional information on the overlapping of fishing operations and sensitive habitats, recording and analysis of benthic sessile species bycatch; the potential use of semi-pelagic trawl is also in research to reduce the impact (Hønneland et al., 2011; FCI, 2012; FCI, 2013). The collection of data on benthic species interactions is behind target but this not compromises the progress of the condition (Hønneland and Revenga, 2016).

      Mapping of the vulnerable habitats continues via the Joint Russian-Norwegian Ecosystem assessment and the Mareano project, skippers avoid benthic communities of sponges and cold-water coral reefs and the fishery was not considered to significantly impact vulnerable habitats (available information from MSC logbooks revealed no interactions with corals and few with sponges). However, MSC recommendation 1 encouraged further actions to decrease the likelihood of any significant impacts, namely: the potential use of less impacting fishing gears (semi-pelagic trawls); b) gather additional information on the overlapping of fishing operations and sensitive habitats; continue using navigation systems to avoid areas of sensitive habitats (Hønneland et al., 2014).

      ECOSYSTEM

      Last updated on 15 August 2018

      There is a good understanding of the trophic chain, importance of key species and predator-prey relationships as well as "factors affecting the negative change in other ecosystem elements" in the Barents Sea ecoregion.  "Several ecosystem modelling studies have been undertaken for the Barents Sea, which have explored for example the trophic relations between fish species, and links between capelin, cod, seabirds, and marine mammals (e.g. ecopath type studies, EcoCod, Gadget, Biofrost, MULTSPEC, STOCOBAR, ECOSIM) as well as broader ecosystem models such as NORWECOM.E2E and hydrodynamic models (e.g. (Pfeiffer et al. 2013); Hønneland et al., 2016). An integrated ecosystem survey is carried out yearly since 2004 by IMR/PINRO (Pfeiffer et al. 2013) seeking to "provide scientific-based advice in order to allow the authorities to make management decisions regarding the long-term utilization of the resources in the Barents Sea area" (Cappell et al. 2015). Both Arctic Fisheries (AFWG) and Integrated Assessments of the Barents Sea (WGIBAR) Working Groups provide annual assessments. "The length of time series for some of this information is impressive and amongst the highest in the world" (Hønneland et al. 2016)

      "ECOSIM modelling of indirect effects suggests that there are no major trophic consequences (notably on cetaceans) of changing harvest rates of cod within the boundaries of established sustainable limits. There is no evidence of declines in marine mammal populations based on current monitoring information. Sufficient evidence is therefore available on the consequences of current levels of removal of target species to suggest no unacceptable impacts of the fishery on the Barents Sea ecosystem" (Pfeiffer et al. 2013)(Hønneland et al. 2014). Cod and capelin have close interactions and these are considered in the multispecies approach used for the cod stock assessment; interactions between stocks and fisheries are evaluated; GADGET modelling has also been used to understand the importance of all pieces in the whole trophic chain. All target species (cod, haddock and saithe) are biologically healthy, all resources are regularly assessed and under a management strategy; discarding is banned and seems to be negligible. Climate-change impacts appear to have more consequences in the Barents Sea ecosystem than the operating fisheries (Gascoigne et al. 2017). The required "assessments of threatened species and habitats and the development of an ecologically coherent network of marine protected areas, and assessment of human activities that may adversely affect ecosystems" under the "relevant conventions and agreements, such as the UN Convention on Biological Diversity" and OSPAR, along with the integrated management plan for the Barents Sea-Lofoten, are important tools to properly understand and manage the ecosystem in the region (Cappell et al. 2015)

      "The integrated Barents Sea-Lofoten ecosystem-based management plan (adopted by the Norwegian government in 2006 and reviewed and updated in 2011) evaluates the status of the ecosystem, the main activities, the cumulative impact of these activities on different components of the ecosystem and sets goals for different parts of the ecosystem, as well as measures and monitoring indicators designed to achieve those goals." A gap analysis identifies, among others, new activities to be conducted in terms of determining the impacts of the fishery in the seabed habitat. The document is considered as a real-time resource to monitor the ecosystem and explicitly determines new or adapted measures to achive the goals. There is an overarching plan for the Norwegian Barents Sea and Lofoten Area but the Russian zone lacks this type of initiative; there are also limitations on the knowledge about the specific and cumulative impacts of the fishing gears on benthic communities functioning and structure. Other gaps are identified in regard to certain areas (Svalbard Fisheries Protection Zone) and to specific VMEs (sponges and coral gardens). A partial strategy is considered to exist, there are current efforts to extend some of the existing Norwegian measures, monitoring, planning and analysis to the Russian territory. Several other measures are in place: TAC for most of the retained species, gears' specifications to increase selectivity, move-on rules to protect juveniles as well as corals and sponges, spawning areas, marine protected areas (Hønneland et al. 2014)(Gaudian et al. 2016)(Gascoigne et al. 2017)(Knapman et al. 2018)

      FishSource Scores

      Last updated on 10 August 2018

      MANAGEMENT QUALITY

      As calculated for 2017 data.

      The score is 8.1.

      This measures the F at low biomass as a percentage of the F management target.

      The F at low biomass is 0.191 (from management plan). The F management target is 0.400 .

      The underlying F at low biomass/F management target for this index is 47.8%.

      As calculated for 2018 data.

      The score is 8.6.

      This measures the Set TAC as a percentage of the Advised TAC.

      The Set TAC is 775 ('000 t). The Advised TAC is 712 ('000 t) .

      The underlying Set TAC/Advised TAC for this index is 109%.

      As calculated for 2017 data.

      The score is 10.0.

      This measures the Estimated catch as a percentage of the Set TAC.

      The Estimated catch is 868 ('000 t). The Set TAC is 890 ('000 t) .

      The underlying Estimated catch/Set TAC for this index is 97.6%.

      STOCK HEALTH:

      As calculated for 2018 data.

      The score is 10.0.

      This measures the SSB as a percentage of the MSY Btrigger.

      The SSB is 1490 ('000 t). The MSY Btrigger is 460 ('000 t) .

      The underlying SSB/MSY Btrigger for this index is 323%.

      As calculated for 2017 data.

      The score is 8.0.

      This measures the F as a percentage of the F management target.

      The F is 0.400 (age-averaged). The F management target is 0.400 .

      The underlying F/F management target for this index is 100%.

      ECOSYSTEM IMPACTS

      Click on the score to see subscore

      Click on the score to see subscore

      Click on the score to see subscore

      ×

      Bycatch Subscores

      Cod and haddock are the main target species representing remaining species very low proportions. Quantitative data is available on all retained species but although the improvements achieved in the last years, the information is not yet adequate to assess ongoing mortalities of all bycatch species or analyse trends, even if caught in low proportions. Direct and indirect impacts of the fishery on ETP species are still to be understood even if the fishery rarely interacts with ETP marine mammals, seabirds, fish and benthic species (Nichols et al. 2015)(Hønneland et al. 2016)(Gaudian et al. 2018)(Knapman et al. 2018). The previous concern interaction with the Russian longline fishery and wolffish is currently resolved (Knapman et al. 2018)

      Cod and haddock are the main target species representing remaining species very low proportions. The main concern regards the cumulative impacts of the fishery on golden redfish (Sebastes norvegicus) which is considered to be in "reduced reproductive capacity" and with fishing pressure above the Maximum Sustainable Yield. This species is mainly bycaught (direct fishery is conditioned), representing Norway and Russia 87% of total removals in 2017; bycatch is preliminary at 64% by trawls (increasing from last years), 18% by gillnets and 15% by longlines (ICES 2018). Uncertainties on the impacts on Greenland shark (Somniosus microcephalus), common or blue skate (Dipturus batis), spurdog (Squalus acanthias) and blue ling (Molva dypterygia), which are listed as endangered or critically endangered, may also exist even if in low proportions (Hønneland et al. 2016)(Hønneland et al. 2014) (Hønneland et al. 2014) (Knapman et al. 2018) (Gaudian et al. 2018). Bycatch of harbour porpoise (Phocoena phocoena) by Norwegian gillnets has been increasing and the impact is not totally understood (Nichols et al. 2015) (NAMMCO 2014).

      There are no 'main' bycatch species being all caught at very low proportions. The fishery is considered as 'clean' and discarding of commercial species is negligible. Uncertainties can be found in skates, rays and other species that may be discarded in low quantities (Hønneland et al. 2014)(Nichols et al. 2015)(Gaudian et al. 2016)(Hønneland et al. 2016)(Knapman et al. 2018).

      Discarding of commercial species is forbidden. Retained species are managed under the Norwegian management plans for the Barents and Norwegian Sea and other measures are established under the Joint Norwegian-Russian Fishery Commission, based on both IMR and PINRO monitoring. Generic management measures, monitoring and management responses are considered as an effective strategy, successful and contribute to low levels of retained species. There are no signs of non-compliance(Knapman et al. 2018) consider that the "Barents Sea would benefit from a comprehensive strategy coordinated by the different jurisdictions to manage impacts on all types of ETP species." There are concerns in regards to golden redfish and harbour porpoise and measures should be adapted accordingly (Hønneland et al. 2014)(Nichols et al. 2015)(Hønneland et al. 2016)(Gaudian et al. 2016).

      ×

      Habitat Subscores

      Monitoring and data analysis about the interaction with the habitat has to be performed to quantify the impacts with some detail and determine longer term and cumulative consequences of bottom trawls (which is the main one used) and Danish seines. Recovery rates of associated species need also to be understood like it is reasonable available for major habitats. Information about some Vulnerable Marine Ecosystems such as coral gardens and sponges is missing (Hønneland et al. 2014)(Hønneland et al. 2016)(Gaudian et al. 2018)(Kiseleva and Nichols 2018)(Knapman et al. 2018). The assessment about the information available on the interaction of the fishery with the seabed habitat is contradictory in some MSC reports.

      "The nature, distribution and vulnerability of benthic habitats of the Barents and Norwegian Seas, are well known and researched by international standards. This information is summarized in various marine atlases, the MAREANO mapping programm, the reports by the Joint Russian Norwegian Ecosystem Assessment; the review by Jakobsen and Ozhigin; through scientific studies undertaken by PINRO, and publications by WWF" (Hønneland et al. 2016) (Kiseleva and Nichols 2018). Gaps are identified in regard to certain areas (Svalbard Fisheries Protection Zone) and to specific Vulnerable Marine Ecosystems such as sponges and coral gardens.

      Measures in place constitute a partial strategy to manage the impacts of the fishery in the habitat and there are current uncertainties about the success. Coral protected areas in Norway only consider coral reefs (and only to the south of Lofoten) and protections measures are missing for some Vulnerable Marine Ecosystems such as sponges and coral gardens. Besides, VMEs are differently protected under both Russian/Norway jurisdictions and some measures are voluntary in Russian waters . Enforcement and compliance are not flagged as a problem (Hønneland et al. 2014)(Kiseleva and Nichols 2018)(Knapman et al. 2018)(Gaudian et al. 2016). 

      ×

      Ecosystem Subscores

      There are limitations on the knowledge about the specific and cumulative impacts of the fishing gears on benthic communities' functioning and structure. Other gaps are identified in regard to certain areas (Svalbard Fisheries Protection Zone), to specific VMEs (sponges and coral gardens) and to protected species such as golden redfish (Nichols et al. 2015) (Hønneland et al. 2014)(Hønneland et al. 2016)(Gascoigne et al. 2017)(Gaudian et al. 2016)(Knapman et al. 2018). 

      The Barents Sea ecosystem is deeply monitored and assessed under various initiatives. Both Arctic Fisheries (AFWG) and Integrated Assessments of the Barents Sea (WGIBAR) Working Groups provide annual assessments. The complex trophic chain and interactions have been studied through diverse statistical models (Pfeiffer et al. 2013)(Nichols et al. 2015)(Gaudian et al. 2016)(Hønneland et al. 2016)(Knapman et al. 2018).  "The length of time series for some of this information is impressive and amongst the highest in the world" (Hønneland et al. 2016)

      Removals of target species are not considered to disrupt the ecosystem function or structure. The concerns are related to the cumulative impacts of all fishing gears, and especially of bottom trawl, on ETP species such as golden redfish and about the specific and cumulative impacts of the fishing gears on benthic communities' functioning and structure and on Vulnerable Marine Ecosystems like sponges and coral gardens (Gascoigne et al. 2017)(Gaudian et al. 2018)(Hønneland et al. 2014)(Hønneland et al. 2016)(Knapman et al. 2018)

      The integrated Barents Sea-Lofoten ecosystem-based management plan is considered as a real-time resource to monitor and manage the ecosystem, however the Russian zone lacks this type of initiative. There are current efforts to address this inconsistency. Other gaps are identified in regard to certain areas (Svalbard Fisheries Protection Zone) and to specific Vulnerable Marine Ecosystems (sponges and coral gardens). A partial strategy is considered to exist and several measures are in place in regard to the target and bycatch species and gears' specifications (Gascoigne et al. 2017)(Gaudian et al. 2018)(Hønneland et al. 2014)(Hønneland et al. 2016)(Knapman et al. 2018). It is not clear whether the ecosystem-based fisheries management is implemented to all fish stocks and how the Integrated Barents Sea-Lofoten ecosystem-based management plan is related with the Joint Russian–Norwegian Fisheries Commission management plan for cod and haddock.

      To see data for biomass, please view this site on a desktop.
      To see data for catch and tac, please view this site on a desktop.
      To see data for fishing mortality, please view this site on a desktop.
      No data available for recruitment
      No data available for recruitment
      To see data for management quality, please view this site on a desktop.
      To see data for stock status, please view this site on a desktop.
      DATA NOTES

      1) Fadvised at low biomass=0.2 is based on the Harvest Control Rule if the spawning stock falls below Bpa. MSY Btrigger = Bpa (ICES 2018)(ICES 2018).
      2) Advised TAC for 2019 is based on the existing Joint Russian–Norwegian Fisheries Commission management plan agreed for this fishery. The management plan was reviewed in 2016 and considered to be in accordance with the Precautionary Approach by ICES (ICES 2018)(ICES 2018).
      3) The 2018 TAC is set by the Joint Russia-Norway Fisheries Commission and includes Russian, Norwegian and third countries' quotas (ICES 2018).
      4) Landings for 2017 represent a provisional value and were used in the 2018 stock assessment (ICES 2018).

      Download Source Data

      Registered users can download the original data file for calculating the scores after logging in. If you wish, you can Register now.

      Fishery Improvement Projects (FIPs)

      No related FIPs

      Certifications

      Marine Stewardship Council (MSC)

      SELECT MSC

      NAME

      Barents Sea cod, haddock and saithe

      STATUS

      MSC Recertified on 22 November 2010

      SCORES

      Principle Level Scores:

      Principle Score
      Principle 1 – Target Species – Atantic cod 94.4
      Principle 1 – Target Species – Haddock 89.4
      Principle 1 – Target Species – Saithe 88.8
      Principle 2 - Ecosystem 85.8
      Principle 3 – Management System 93.3

      Certification Type: Gold

      Sources

      Credits
      1. Althaus, F., Williams, A., Schlacher, T., Kloser, R., Green, M., Barker, B., Bax, N., Brodie, P. and Schlacher-Hoenlinger, M. 2009. Impacts of bottom trawling on deep-coral ecosystems of seamounts are long-lasting. Marine Ecology Progress Series, 397: 279-294.http://www.int-res.com/abstracts/meps/v397/p279-294/
      2. Bjørge, A., Gødoy, H., Skern-Mauritzen, M. 2013. Estimated bycatch of harbour porpoise (Phocoena phocoena) in two coastal gillnet fisheries in Norway, 2006–2008. Mitigation and implications for conservation, Biological Conservation 161:164–173http://www.sciencedirect.com/science/article/pii/S0006320713000761
      3. Bradbury, I.R., Hubert, S., Higgins, B., Bowman, S., Borza, T., Paterson, I.G., Snelgrove, P.V.R., Morris, C. J., Gregory, R.S., Hardie, D., Hutchings, J.A., Ruzzante, D.E., Taggart, C.T., and P. Bentzen. 2013. Genomic islands of divergence and their consequences for the resolution of spatial structure in an exploited marine fish. Evolutionary Applications 6 (3): 450–461http://onlinelibrary.wiley.com/doi/10.1111/eva.12026/epdf
      4. Bureau Veritas Certification, 2015. AGARBA Spain Barents Sea Cod Fishery. First Annual Surveillance - On Site Audit Team. February 2015. 28pphttp://www.msc.org/track-a-fishery/fisheries-in-the-program/certified/north-east-atlantic/agarba-spain-barents-sea-cod/assessment-downloads-folder/AGARBA_17022015_SR.pdf
      5. Cappell, R., Lassen, H., Pawson, M., 2015. Greenland Cod, Haddock and Saithe Trawl Fishery in the Barents Sea. Intertek Fisheries Certification. 284pphttps://www.msc.org/track-a-fishery/fisheries-in-the-program/certified/north-east-atlantic/greenland-cod-haddock-and-saithe-trawl/assessment-downloads-1/20150505_PCR_COD412.pdf
      6. Cappell, R., Lassen, H., Pawson, M., 2016. Off-Site Surveillance Visit - Report for Greenland cod, haddock and saithe trawl FisheryJune 2016, 15pp https://fisheries.msc.org/en/fisheries/greenland-cod-haddock-and-saithe-trawl-fishery/@@assessments
      7. Centre for Research-based Innovation in Sustainable fish capture and Processing technology (CRISP), 2013. Annual Report 2012, Centre for Research-based Innovation and Institute of Marine Research, 26 pp.http://www.imr.no/filarkiv/2013/04/crisp_annual_report_2012_screen.pdf/en
      8. Cetacean Specialist Group 1996. In: IUCN 2006. 2006 IUCN Red List of Threatened Species. http://www.iucnredlist.org
      9. Commission of the European Communities. 1999. Communication from the Commission to the Council and The European Parliament. Fisheries Management and Nature Conservation in the Marine Environment. Brussels. 1999http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2000:0015:FIN:EN:PDF
      10. Convention on the Conservation of European Wildlife and Natural Habitats, Bern 19.IX.1979http://conventions.coe.int/treaty/en/Treaties/Html/104.htm
      11. Coral reefs in Norwayhttp://www.imr.no/coral/news.php
      12. de Clers, S. and Sieben, C. 2013. Surveillance visit: Report for Euronor and Compagnie des Peches St. Malo cod (Gadus morhua) and Haddock (Melanogrammus aeglefinus) fishery, Certificate codes: MEP-F-008/9, Surveillance year 1, MacAlister Elliott and Partners Ltd. , United Kingdom, 16 pp.http://www.msc.org/track-a-fishery/fisheries-in-the-program/certified/arctic-ocean/comapeche_euronor_cod_haddock/assessment-downloads-1/20130409_SR_COD224.pdf
      13. Directorate of Fisheries (DOF), 2011. Marine protected areas. Directorate of Fisheries Website. Last updated 28 September 2011.http://www.fiskeridir.no/english/fisheries/marine-protected-areas
      14. European Commission. 2006. http://www.EuropeanCommission/Fisheries/press_corner/press_releases/archives/com03_en.htm
      15. Fangel, K., Wold, L.C, Aas, Ø., Christensen-Dalsgaard, S., Qvenild, M. & Anker-Nilssen, T. 2011. Bifangst av sjøfugl i norske kystfiskerier. Et kartleggings- og metodeutprøvingsprosjekt med focus på fiske med garn og line (In English: Bycatch of seabirds in Norwegian coastal fisheries - A survey and testing methods project focusing on fishing with nets and longlines), Norwegian Institute for Nature Research (NINA) Report 719, 103 pp.http://www.nina.no/archive/nina/PppBasePdf/rapport/2011/719.pdf
      16. FAO, 2013. Globefish, European price report, Issue 10/2013 October 2013, Fish Products and Industry Division, 22 pp.http://www.thefarmsite.com/reports/contents/EPROct2013.pdf
      17. Food Certification International Ltd (FCI), 2012. Surveillance Visit - Report for Barents Sea cod and Barents Sea haddock Fishery - Second Surveillance Report. October, 2012. 25pp.http://www.msc.org/track-a-fishery/fisheries-in-the-program/certified/north-east-atlantic/barents-sea-cod-and-haddock/assessment-downloads-1/20121009_SR_COD10.pdf
      18. Food Certification Internations Ltd (FCI), 2013. Surveillance Visit - Report for Pescafría-Pesquera Rodríguez Barents Sea Cod Fishery, MSC Sustainable Fisheries Certification, 1st Annual Surveillance, March 2013 , 19 pp.http://www.msc.org/track-a-fishery/fisheries-in-the-program/certified/north-east-atlantic/pescafria-pesquera_rodriguez_barents_sea_cod/assessment-downloads-1/20130319_SR_COD244.pdf
      19. Food Certification International (FCI), 2014. Off-Site Surveillance Visit - Report for FIUN Barents & Norwegian Seas cod and haddock Fishery. 1st Surveillance Audit, October 2014. 36pphttp://www.msc.org/track-a-fishery/fisheries-in-the-program/certified/north-east-atlantic/fiun_barents_and_norwegian_seas_cod_and_haddock/assessment-downloads-1/1st_Surveillance_Report_-_Final_v2_-_FIUN_BSCH.pdf
      20. Food Certification International (FCI), 2015. On-Site Surveillance Visit - Report for Barents Sea cod and Barents Sea haddock Fishery. 4th Surveillance Audit, March 2015. 31pphttp://www.msc.org/track-a-fishery/fisheries-in-the-program/certified/north-east-atlantic/barents-sea-cod-haddock-and-saithe/assessment-downloads-1/20150310_SR4_COD010.pdf
      21. Ferretti, F., Morey, G, Serena, F., Mancusi, C., Fowler, S.L., Dipper, F. & Ellis, J. 2015. Squatina squatina. The IUCN Red List of Threatened Species 2015: e.T39332A48933059. [Accessed 14 January 2016]http://dx.doi.org/10.2305/IUCN.UK.2015-1.RLTS.T39332A48933059.en
      22. Fordham, S., Fowler, S.L., Coelho, R., Goldman, K.J. & Francis, M. 2006. Squalus acanthias. The IUCN Red List of Threatened Species 2006: e.T39326A10201416 [Accessed 25 January 2016]http://dx.doi.org/10.2305/IUCN.UK.2006.RLTS.T39326A10201416.en
      23. Fowler, S.L. 2005. Cetorhinus maximus. The IUCN Red List of Threatened Species 2005: e.T4292A10763893 [Accessed 25 January 2016]http://dx.doi.org/10.2305/IUCN.UK.2005.RLTS.T4292A10763893.en
      24. Freese, L., Auster, P. J., Heifetz, J. and Wing, B. L. 1999. Effects of trawling on seafloor habitat and associated invertebrate taxa in the Gulf of Alaska. Marine Ecology Progress Series, 182: 119-126.http://cat.inist.fr/?aModele=afficheN&cpsidt=1886068
      25. García, M., Polonio, V., and l. Borges.2016. AGARBA Spain Barents Sea Cod Fishery. Second Annual Surveillance – On site audit. April 2016, 43pp https://fisheries.msc.org/en/fisheries/agarba-spain-barents-sea-cod/

      26. Gascoigne, J., Sieben, C. 2013. Surveillance Visit Report for UK Fisheris LTD. / DFFU / Doggerbank Cod (Gadus morhua), Haddock (Melanogrammus aeglefinus) and Saithe (Pollachius viridens). Surveillance Year 1. MacAlister Elliott and Partners Ltd, February 2013. 19pphttp://www.msc.org/track-a-fishery/fisheries-in-the-program/certified/north-east-atlantic/uk_fisheries_dffu_doggerbank_northeast_arctic_cod_haddock_saithe/assessment-downloads-1/20130321_SR_COD247.pdf
      27. Gascoigne, J., Sieben, C., 2014. Surveillance Visit – Report For Euronor and Cie. des Peches St. Malo. Cod and Haddock Fishery (Gadus morhua and Melanogrammus aeglefinus) . Surveillance Year 2. MacAlister Elliott and Partners Ltd, April 2014. 18pphttp://www.msc.org/track-a-fishery/fisheries-in-the-program/certified/arctic-ocean/comapeche_euronor_cod_haddock/assessment-downloads-1/20140520_SR_COD224.pdf
      28. Gascoigne, J., Cardinale, M., Löwenberg, U., Collinson, K., 2015. Marine Stewardship Council (MSC) Third Annual Surveillance Audit UK Fisheries Ltd., DFFU, Doggerbank cod (Gadus morhua), haddock (Melanogrammus aeglefinus) and saithe (Pollachius virens). ME Certification Ltd, July 2015. 35pphttps://www.msc.org/track-a-fishery/fisheries-in-the-program/certified/north-east-atlantic/uk_fisheries_dffu_doggerbank_northeast_arctic_cod_haddock_saithe/assessment-downloads-1/20150716_SR_COD247.pdf
      29. Gaudian, G., Hønneland, G., and R. O’Boyle, 2016. Arkhangelsk Trawlfleet Barents Sea cod & haddock Fishery- Public Certification Report. January 2015, 214 pp https://fisheries.msc.org/en/fisheries/arkhangelsk-trawl-fleet-norwegian-and-barents-seas-cod-haddock-fishery/

      30. GreenPeace. 2005. An Integrated Management Plan for Lofoten and Barents Sea: An opportunity that must not be lost. April, 4, 2005. http://weblog.greenpeace.org/arcticseas/archives/2005/04/an_integrated_m.html
      31. Gullestad, P. Blom, G., Bakke, G., Bogstad, B. 2015. The “Discard Ban Package”: Experiences in efforts to improve the exploitation patterns in Norwegian fisheries, Marine Policy 54: 1–9http://ac.els-cdn.com/S0308597X14002589/1-s2.0-S0308597X14002589-main.pdf?_tid=470c0f52-bed2-11e5-8f21-00000aacb362&acdnat=1453224785_6036d704b2efda903ebc4242686d4899
      32. Hammond, P.S., Bearzi, G., Bjørge, A., Forney, K., Karczmarski, L., Kasuya, T., Perrin, W.F., Scott, M.D., Wang, J.Y., Wells, R.S., Wilson, B. 2008. Phocoena phocoena. The IUCN Red List of Threatened Species 2008: e.T17027A6734992 [Accessed 16 January 2016]http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T17027A6734992.en
      33. Hønneland, G., Medley, P., MacIntyre, P., Southall, T., Smith, R. 2011. MSC Sustainable Fisheries Certification, The Barents Sea Cod & Haddock Fisheries, First Annual surveillance report, 30 pp.http://www.msc.org/track-a-fishery/certified/north-east-atlantic/barents-sea-cod-and-haddock/assessment-downloads-1/25.10.2011_1st_Public_Surveillance_Report_-_Final_-_BSCH.pdf
      34. Hønneland, G., Kiseleva, A., Nichols, J.H. and Pawson, M.G., 2014. Public Certification Report – Russian Federation Barents Sea Cod and Haddock. DET NORSKE VERITAS, April 2014. 263 pp.http://www.msc.org/track-a-fishery/fisheries-in-the-program/certified/north-east-atlantic/russian-federation-barents-sea-cod-and-haddock/assessment-downloads-1/20140506_PCR_COD403.pdf
      35. Hønneland, G.,  O’Boyle, R., and J.Hambrey, 2016. Barents Sea cod, haddock and saithe fishery – Public Certification Report.  September 2016, 264pp. https://fisheries.msc.org/en/fisheries/barents-sea-cod-haddock-and-saithe/

      36. Hønneland, G. and L. Revenga, 2016. Onsite Surveillance Visit - Report for FIUN Barents & Norwegian Seas cod and haddock Fishery. 2nd Surveillance Audit, May 2016. 33pp https://fisheries.msc.org/en/fisheries/fiun-barents-norwegian-seas-cod-and-haddock

      37. Huntington, T. and S. Chaudhury,  2017. Surveillance nº 1. Surveillance Report for the Norway North East Arctic cod fishery. January 2017. 43pp https://fisheries.msc.org/en/fisheries/norway-north-east-arctic-cod

        http://www.regjeringen.no/en/dep/fkd/Press-Centre/Press-releases/2010/Very-good-results-in-combating-illegal-fishing.html?id=601898http://www.regjeringen.no/en/dep/fkd/Press-Centre/Press-releases/2010/Very-good-results-in-combating-illegal-fishing.html?id=601898
      38. ICES. 2006. Report of the Benthos Ecology Working Group (BEWG). 15 May 2006. Heraklion, Crete, Greece. http://www.ices.dk/reports/MHC/2006/BEWG06.pdf
      39. ICES. 2006. Report of the Working Group on Ecosystem Effects of Fishing Activities (WGECO), 5-12 April 2006. ICES Headquarters, Copenhagen. ACE:05.174 pp.http://www.ices.dk/reports/ACOM/2007/WGECO/WGECO07.pdf
      40. ICES. 2007. ICES BEWG Report 2007. ICES Marine Habitat Committeehttp://www.ices.dk/reports/MHC/2007/BEWG07.pdf
      41. ICES. 2007. Report of the Arctic Fisheries Working Group (AFWG). North-East Arctic Cod (Subareas I AND II). 2007. ICES Headquarters.http://www.ices.dk/reports/ACOM/2007/AFWG/03-North%20East%20Arctic%20Cod%20(Subareas%20I%20and%20II).pdf
      42. ICES, 2008a. Report of the arctic Fisheries Working Group (AFWG), 21-29 April 2008, ICES Headquarters, Copenhagen (ICES CM 2008\ACOM:01).http://www.ices.dk/reports/ACOM/2008/AFWG/AFWG08.pdf
      43. ICES, 2008b. Report of the ICES Advisory Committee on Fishery Management, Advisory Committee on the Marine Environment and Advisory Committee on Ecosystems, Book 3 The Barents Sea and the Norwegian Sea. Section 3.4.1 Northeast Arctic cod. http://www.ices.dk/committe/acom/comwork/report/2008/2008/cod-arct.pdf
      44. ICES, 2009a. Report of the Advisory Committee, 2009. Book 3 The Barents Sea and the Norwegian Sea. 3.4.1 Cod in Subareas I and II (Northeast Arctic cod).http://www.ices.dk/committe/acom/comwork/report/2009/2009/cod-arct.pdf
      45. ICES, 2009b. Report of the Arctic Fisheries Working Group (AFWG), 21-27 April 2009, San Sebastian, Spain (ICES CM 2009\ACOM:02).http://www.ices.dk/reports/ACOM/2009/AFWG/AFWG09.pdf
      46. ICES, 2010a. Report of the ICES Advisory Committee, Book 3: The Barents Sea and the Norwegian Sea. 3.4.1 Ecoregion: Barents Sea and Norwegian Sea; Stock: Cod in Subareas I and II (Northeast Arctic cod). Advice summary for 2011.http://www.ices.dk/committe/acom/comwork/report/2010/2010/cod-arct.pdf
      47. ICES, 2010b. Report of the Arctic Fisheries Working Group (AFWG), 22 - 28 April 2010, Lisbon, Portugal / Bergen, Norway). ICES CM 2010/ACOM:05. 664 pp.http://www.ices.dk/reports/ACOM/2010/AFWG/AFWG%202010.pdf
      48. ICES, 2010c. Report of the Arctic Fisheries Working Group (AFWG), 22-28 April 2010, Lisbon, Portugal/Bergen, Norway (ICES CM 2010/ACOM:05).http://www.ices.dk/reports/ACOM/2010/AFWG/AFWG%202010.pdf
      49. ICES, 2011a. Report of the ICES Advisory Committee, Book 3: The Barents Sea and the Norwegian Sea. 3.4.1 Ecoregion: Barents Sea and Norwegian Sea; Stock: Cod in Subareas I and II (Northeast Arctic cod). Advice summary for 2012. 9 pp.http://www.ices.dk/committe/acom/comwork/report/2011/2011/cod-arct.pdf
      50. ICES, 2011b. Report of the Arctic Fisheries Working Group (AFWG), 28 April - 4 May 2011, Hamburg, Germany. ICES CM 2011\ACOM:05. 659 pp.http://www.ices.dk/reports/ACOM/2011/AFWG/AFWG%20Report%202011.pdf
      51. ICES, 2012a. Report of the ICES Advisory Committee, Book 3: The Barents Sea and the Norwegian Sea. 3.4.1 Ecoregion: Barents Sea and Norwegian Sea; Stock: Cod in Subareas I and II (Northeast Arctic cod). Advice summary for 2013. 10 pp.http://www.ices.dk/committe/acom/comwork/report/2012/2012/Cod-arct.pdf
      52. ICES, 2012b. Report of the Arctic Fisheries Working Group (AFWG), 20 - 26 April 2012, ICES Headquarters, Copenhagen. ICES CM 2012/ACOM:05. 633 pp. http://www.ices.dk/reports/ACOM/2012/AFWG/AFWG%20Report%202012.pdf
      53. ICES, 2013a. Report of the ICES Advisory Committee, Book 3: The Barents Sea and Norwegian Sea 3.4.2 Ecoregion: Barents Sea and Norwegian Sea. Stock: Cod in Subareas I and II (Northeast Arctic cod). Advice summary for 2014, 11 pp.http://www.ices.dk/sites/pub/Publication%20Reports/Advice/2013/2013/Cod-arct.pdf
      54. ICES, 2013b. Report of the Arctic Fisheries Working Group (AFWG), 18 - 24 April 2013, ICES Headquarters, Copenhagen. ICES CM 2013/ACOM:05. 682 pp.http://www.ices.dk/sites/pub/Publication%20Reports/Expert%20Group%20Report/acom/2013/AFWG/AFWG%202013.pdf
      55. ICES, 2013c. Report of the ICES Advisory Committee, Book 3: The Barents Sea and Norwegian Sea 3.4.6 Ecoregion: Barents Sea and Norwegian Sea. Stock: Beaked redfish (Sebastes mentella) in Subareas I and II. Advice summary for 2014, 8 pp.http://www.ices.dk/sites/pub/Publication%20Reports/Advice/2013/2013/smn-arct.pdf
      56. ICES, 2013d. Report of the ICES Advisory Committee, Book 3: The Barents Sea and Norwegian Sea 3.4.7 Ecoregion: Barents Sea and Norwegian Sea. Stock: Golden redfish (Sebastes marinus) in Subareas I and II. Advice summary for 2014, 7 pp.http://www.ices.dk/sites/pub/Publication%20Reports/Advice/2013/2013/smr-arct.pdf
      57. ICES, 2013e. Report of the ICES Advisory Committee, Book 3: The Barents Sea and Norwegian Sea 3.4.3 Ecoregion: Barents Sea and Norwegian Sea. Stock: Cod in Subareas I and II (Norwegian coastal waters cod). Advice summary for 2014, 7 pp.http://www.ices.dk/sites/pub/Publication%20Reports/Advice/2013/2013/cod-coas.pdf
      58. ICES, 2014a. Report of the ICES Advisory Committee, Book 3: The Barents Sea and Norwegian Sea 3.3.2 Ecoregion: Barents Sea and Norwegian Sea. Stock: Cod in Subareas I and II (Northeast Arctic cod). Advice summary for 2015, 11 pp.http://www.ices.dk/sites/pub/Publication%20Reports/Advice/2014/2014/cod-arct.pdf
      59. ICES, 2014b. Report of the Arctic Fisheries Working Group (AFWG), 2014, Lisbon, Portugal. ICES CM 2014/ACOM:05. 656 pp.http://www.ices.dk/sites/pub/Publication%20Reports/Expert%20Group%20Report/acom/2014/AFWG/01%20AFWG%20-%20Report%20of%20the%20Arctic%20Fisheries%20Working%20Group.pdf
      60. ICES, 2015a. ICES Advice on fishing opportunities, catch, and effort. Barents Sea and Norwegian Sea Ecoregions, 3.3.4 Cod (Gadus morhua) in Subareas I and II (Northeast Arctic), 8pp.http://ices.dk/sites/pub/Publication%20Reports/Advice/2015/2015/cod-arct.pdf
      61. ICES, 2015b. Report of the Arctic Fisheries Working Group (AFWG), 23-29 April 2015, Hamburg, Germany. ICES CM 2015/ACOM:05. 639 pp.http://ices.dk/sites/pub/Publication%20Reports/Expert%20Group%20Report/acom/2015/AFWG/01%20AFWG%20Report%202015.pdf
      62. ICES 2015c. Stock Annex: Golden redfish (Sebastes norvegicus) in subareas 1 and 2 (Northeast Arctic). http://ices.dk/sites/pub/Publication%20Reports/Stock%20Annexes/2016/smr-arct_SA.pdf
      63. ICES, 2016a. Report of the ICES Advisory Committee. Book 3. ICES Advice on fishing opportunities, catch, and effort Barents Sea and Norwegian Sea Ecoregions. 3.3.2 Cod (Gadus morhua) in subareas 1 and 2 (Northeast Arctic). Advice June 2016. http://www.ices.dk/sites/pub/Publication%20Reports/Advice/2016/2016/cod-arct.pdf

      64. ICES. 2016b. Report of the Arctic Fisheries Working Group (AFWG), 19–25 April 2016, ICES HQ, Copenhagen, Denmark. ICES CM 2016/ACOM:06 http://www.ices.dk/sites/pub/Publication%20Reports/Expert%20Group%20Report/acom/2016/AFWG/01%20AFWG%20Report%202016.pd

      65.  ICES. 2016c. Norway/Russia request for evaluation of harvest control rules for Northeast Arctic cod and haddock and for Barents Sea capelin. In Report of the ICES Advisory Committee, 2016. ICES Advice 2016, Book 3, Section 3.4.1. ICES Special Request Advice. http://www.ices.dk/sites/pub/Publication%20Reports/Advice/2016/Special_Requests/Norway-Russia_HCR_Northeast_Artic_cod_haddock_capelin.pdf

      66. ICES, 2016 d. Report of the ICES Advisory Committee. Book 3. ICES Advice on fishing opportunities, catch, and effort Barents Sea and Norwegian Sea Ecoregions. 3.3.8 Golden redfish (Sebastes norvegicus) in subareas 1 and 2 (Northeast Arctic). Advice June 2016. http://www.ices.dk/sites/pub/Publication%20Reports/Advice/2016/2016/smr-arct.pdf

      67. ICES Advice 2007, 16 Book 3, Stock summaries, Northeast Arctic codhttp://www.ices.dk/committe/acfm/comwork/report/2007/may/cod-arct.pdf

      68. IMR/PINRO. 2006. Joint PINRO/IMR Report on the State of the Barents Sea Ecosystem 2005/2006http://www.imr.no/english/__data/page/6983/Nr.3_2006_Joint_PINROIMR_report_on_the_state_of_the_Barents_sea_ecosystem_2005-2006.pdf
      69. IUCN 2009. IUCN Red List of Threatened Species. Version 2009.1. Downloaded on 26 June 2009.http://www.iucnredlist.org
      70. Joint Norwegian-Russian Fisheries Commission (JNRFC), undated. Regulations. JNRFC website. Accessed 18 July 2014.http://www.jointfish.com/eng/REGULATIONS
      71. Joint Russian-Norwegian Fisheries Commission (JRNFC), 2015. Protocol 45th Fisheries Commission Session (In Norwegian), 19pp.45.Sesjon_uten_vedlegg_-_quota_agreement_2016.pdf
      72. Kiseleva, A., Lockwood., S., 2014. Surveillance Visit – Report for Faroe Islands North East Arctic Cod Fishery. Surveillance No. 2. DNV GL Business Assurance Norway AS, August 2014. 54pp http://www.msc.org/track-a-fishery/fisheries-in-the-program/certified/north-east-atlantic/faroe_island_north_east_arctic_cod/assessment-downloads-1/20140902_SR_COD307.pdf
      73. Kiseleva, A., Lockwood, S., Danielsson, Å., 2014. Scope Extension public comment draft report – Faroe Islands North East Arctic Cod Fishery. DNV GL Business Assurance Norway AS, september 2014. 121pphttp://www.msc.org/track-a-fishery/fisheries-in-the-program/certified/north-east-atlantic/faroe_island_north_east_arctic_cod/assessment-downloads-1/20140918_PCDR_SCOPE_EXT_COD307.pdf
      74. Kiseleva, A., Payne, A., 2015. Surveillance no.3 - Surveillance audit – Report for the Faroe Islands North East Arctic Cod Fishery. DNV GL - Business Assurance, August 2015. 24pphttps://www.msc.org/track-a-fishery/fisheries-in-the-program/certified/north-east-atlantic/faroe_island_north_east_arctic_cod_and_saithe/assessment-downloads-1/20150813_SR_COD307.pdf
      75. Kiseleva, A., Nichols, J., 2016. Surveillance nº 2 - Report for the Russian Federation Barents sea cod and haddock fishery. September 2016, 35pp.  https://fisheries.msc.org/en/fisheries/russian-federation-barents-sea-cod-and-haddock/@@assessments
      76. Lockwood, S., G. Pilling, A. Hoel, A. Hough, S. Davies, 2010. Public Certification Report for Norwegian North East Arctic Offshore Cod Fishery. Moody Marine Ltd. http://www.msc.org/track-a-fishery/certified/north-east-atlantic/Norway-north-east-arctic-offshore-cod/assessment-downloads-1/26.04.2010-norway-nea-offshore-cod-pcr.pdf
      77. Lockwood, S., Kiseleva, A. 2013. MSC Fishery 1st Surveillance Audit report for The Faroe Islands North East Arctic Cod Fishery. Det Norske Veritas AS. Report No. 2013-019. 38pp.http://www.msc.org/track-a-fishery/fisheries-in-the-program/certified/north-east-atlantic/faroe_island_north_east_arctic_cod/assessment-downloads-1/20130917_SR_COD307.pdf
      78. Lockwood, S., Samro, O., Chaudhury, S. 2012. MSC Fishery Assessment report: Faroe Island North East Arctic Cod Fishery, Final report, Revision No. 03– 18.06.2012, 186 pp. http://www.msc.org/track-a-fishery/in-assessment/north-east-atlantic/gadus-cod/assessment-downloads-1/20120625_FR_18_07_12.pdf
      79. Lockwood S., Samro o., Chaudhury S. 2012. MSC Fishery Assessment report: Faroe Islands North East Arctic Cod Fishery. Report N. 2011-0017. DNV Certification AS, August 2012. 197pp.http://www.msc.org/track-a-fishery/in-assessment/north-east-atlantic/gadus-cod/assessment-downloads-1/20120816_PCR_COD307.pdf
      80. Loeng, H., P. Dalpadado, R. Ingvaldsen, G. Ottersen and J.E. Stiansen. 2002. Ecological Conditions in the Barents Sea, 2001-2002. Institute of Marine Research, Bergen, Norway. Working Document to the Arctic Fisheries Working Group. Copenhagen, 16-25 April 2002. ICES. 2002http://www.imr.no/__data/page/3859/Ecological_conditions_in_the_Barents_Sea_2001-2002.pdf
      81. MacAlister Elliot and Partners (MEP) Ltd., 2012. Public Certification Report Fishery for Northeast Arctic cod (Gadus morhua), haddock (Melanogrammus aeglefinus) and saithe (Pollachius virens) by UK Fisheries, DFFU and Doggerbank, May 2012. 186 pp.http://www.msc.org/track-a-fishery/in-assessment/north-east-atlantic/UK-cod-haddock-and-saithe/assessment-downloads-1/20120503_PCR.pdf
      82. MacAlister Elliot and Partners LTD (MEP), 2012a. Final Report Fishery for Northeast Arctic cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) by Euronor and Compagnie des Pêches St. Malo, 20 March 2012. 168pp.http://www.msc.org/track-a-fishery/in-assessment/arctic-ocean/comapech-and-euronor-cod-and-haddock/assessment-downloads-1/20120322_FR.pdf
      83. Mareano, 2013. The Sea in Maps and Pictures, Results [Accessed 30th July 2013]http://www.mareano.no/en/results
      84. Marine Stewardship Council (MSC), 2011. Certified fisheries, North-east Atlantic, Norway North East Arctic offshore cod. [Assessed on 08 September 2011] http://www.msc.org/track-a-fishery/certified/north-east-atlantic/Norway-north-east-arctic-offshore-cod
      85. Marine Stewardship Council (MSC), 2016. Norway North East Arctic cod [Accessed 16 January 2016]https://www.msc.org/track-a-fishery/fisheries-in-the-program/certified/north-east-atlantic/Norway-north-east-arctic-offshore-cod
      86. Ministry of Environment of Norway. Development of comprehensive management system for coastal and maritime areashttp://www.regjeringen.no/en/ministries/md/Documents-and-publications/Government-propositions-and-reports-/Reports-to-the-Storting-white-papers-2/20012002/Report-No-12-2001-2002-to-the-Storting/2.html?id=452046
      87. Ministry of Fisheries and Coastal Affairs, 2008. Agreement on Norwegian-Russian quotas for 2009. Press release No.:84/2008.http://www.regjeringen.no/en/dep/fkd/Press-Centre/Press-releases/2008/agreement-on-norwegian-russian-quotas-fo.html?id=532295
      88. Ministry of Fisheries and Coastal Affairs (MFCA), 2010. Press release 29.04.10: Very good results in combating illegal fishing.http://www.regjeringen.no/en/dep/fkd/Press-Centre/Press-releases/2010/Very-good-results-in-combating-illegal-fishing.html?id=601898
      89. Ministry of Fisheries and Coastal Affairs (MFCA), 2010. Press release No. 63/2010, 06.10.10. Agreement in the Joint Norwegian–Russian Fisheries Commission on quotas for 2011.http://www.regjeringen.no/en/dep/fkd/Press-Centre/Press-releases/2010/Agreement-in-the-Joint-NorwegianRussian-Fisheries-Commission-on-quotas-for-2011-.html?id=619744
      90. Ministry of Fisheries and Coastal Affairs (MFCA), 2011. Press release No. 95/2011, 18.10.11. 2012 Norwegian-Russian fishery pact agreedhttp://www.regjeringen.no/en/dep/fkd/pressesenter/pressemeldinger/2011/enighet-om-norsk-russisk-fiskeriavtale-f.html?id=660700
      91. Ministry of Fisheries and Coastal Affairs (MFCA), 2011. Press release No. 95/2011, 18.10.11. 2012 Norwegian-Russian fishery pact agreed.http://www.regjeringen.no/en/dep/fkd/pressesenter/pressemeldinger/2011/enighet-om-norsk-russisk-fiskeriavtale-f.html?id=660700
      92. Ministry of Fisheries and Coastal Affairs (MFCA), 2012. Press release No. 75/2012,16.10.12. Historically high cod quota in the Norwegian–Russian Fisheries Agreement for 2013. http://www.regjeringen.no/en/dep/fkd/press-centre/Press-releases/2012/historically-high-cod-quota-in-the-norwe.html?id=704623
      93. MoE, 2012. First update of the Integrated Management Plan for the Marine Environment of the Barents Sea–Lofoten Area. Meld. St. 10 (2010–2011), Report to the Storting (white paper). Norwegian Ministry of the Environment (MoE). Oslo. 151 pp.http://www.regjeringen.no/pages/37878053/PDFS/STM201020110010000EN_PDFS.pdf
      94. NBDI, 2006. Norwegian Biodiversity Information Centre. 2006 Norwegian Red List. http://www.biodiversity.no/Article.aspx?m=207&amid=3573
      95. NDF, 2009. Status report for 2008: Russian catches of north east arctic cod and haddock. Norwegian Directorate of Fisheries – Fiskeridirektoratet.http://www.fdir.no/fiskeridir/fiske-og-fangst/rapporter-utredninger/russland/russisk-fangst-av-torsk-og-hyse-og-omlasting-paa-havet
      96. Neuenfeldt, S., Righton, D., Neat, F., Wright, P. J., Svedang, H., Michalsen, K., Subbey, S., Steingrund, P., Thorsteinsson, V., Pampoulie, C., Andersen, K. H., Pedersen, M. W., and J. Metcalfe. 2013. Analysing migrations of Atlantic cod Gadus morhua in the north-east Atlantic Ocean: then, now and the future. Journal of Fish Biology 82: 741–763 doi:10.1111/jfb.12043 http://www.hafro.is/Bokasafn/Greinar/j_fish_biol_82-741.pdf
      97. New Jersey Fishing-Otter Trawlinghttp://www.fishingnj.org/techott.htm
      98. Nichols, J., Lockwood, S., Sverdrup-Jensen, S., Pedersen, G. M. 2015. Public Certification Report for the Norway North East Arctic cod and haddock fishery. Re-assessment report. DNV GL for Norges Fiskarlag, 375pp.https://www.msc.org/track-a-fishery/fisheries-in-the-program/certified/north-east-atlantic/Norway-north-east-arctic-offshore-cod/reassessment-downloads/20151008_PCR_COD086.pdf
      99. Nikolaeva NG, Spiridonov VA, Krasnov YV, 2006. Existing and proposed marine protected areas and their relevance for seabirdconservation: a case study in the Barents Sea region. Waterbirds around the world. Eds. Boere GC, Galbraith CA, Stroud DA. The Stationery Office, Edinburgh, UK.http://www.jncc.gov.uk/PDF/pub07_waterbirds_part5.5.2.pdf
      100. Norwegian Biodiversity Information Centre (NBIC), 2010. 2010 Norwegian Red List. Artsdatabanken. http://www.artsdatabanken.no/Article.aspx?m=207&amid=8737
      101. Norwegian Directorate of Fisheries, 2007. Status report for 2007 – Russian fishing of cod and haddock/ transhipment at sea (sic).http://www.fiskeridir.no/fiskeridir/english/reports/russian_cod_fishing_transhipment_at_sea
      102. Norwegian Government (NG), 2015. Press release: Agreeing Norwegian-Russian quota agreement for 2016, date: 09/10/2015 [translated via google; accessed 14 January 2016]https://www.regjeringen.no/no/aktuelt/enighet-om-norsk-russisk-kvoteavtale-for-2016/id2457679/
      103. Pfeiffer, N., Medley, P., Merino, A. 2012. Public Certification Report, Pescafría-Pesquera Rodríguez Barents Sea cod, MSC Sustainable Fisheries Certification, Food Certification International Ltd, 181 pp.http://www.msc.org/track-a-fishery/certified/north-east-atlantic/pescafria-pesquera_rodriguez_barents_sea_cod/assessment-downloads-1/20120127_PCR.pdf
      104. Pfeiffer, N., Sieben, C., 2014. Surveillance Visit Report for UK Fisheries LTD. / DFFU/ Doggerbank Cod (Gadus morhua), Haddock (Melanogrammus aeglefinus) and Saithe (Pollachius virens) Fishery. Surveillance Year 2. MacAlister Elliott and Partners Ltd, MArch 2014. 23pphttp://www.msc.org/track-a-fishery/fisheries-in-the-program/certified/north-east-atlantic/uk_fisheries_dffu_doggerbank_northeast_arctic_cod_haddock_saithe/assessment-downloads-1/20140417_SR_COD247.pdf
      105. Reeves, R. R., McClellan, K., Werner, T. B. 2013. Marine mammal bycatch in gillnet and other entangling net fisheries, 1990 to 2011, Endangered species Research 20:71-97http://www.int-res.com/articles/esr_oa/n020p071.pdf
      106. Reilly, S.B., Bannister, J.L., Best, P.B., Brown, M., Brownell Jr., R.L., Butterworth, D.S., Clapham, P.J., Cooke, J., Donovan, G.P., Urbán, J., Zerbini, A.N. 2008a. Balaenoptera borealis. The IUCN Red List of Threatened Species 2008: e.T2475A9445100 [Accessed 14 January 2016]http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T2475A9445100.en
      107. Reilly, S.B., Bannister, J.L., Best, P.B., Brown, M., Brownell Jr., R.L., Butterworth, D.S., Clapham, P.J., Cooke, J., Donovan, G.P., Urbán, J. & Zerbini, A.N. 2008b. Balaenoptera musculus. The IUCN Red List of Threatened Species 2008: e.T2477A9447146 [Accessed 14 January 2016]http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T2477A9447146.en
      108. Reilly, S.B., Bannister, J.L., Best, P.B., Brown, M., Brownell Jr., R.L., Butterworth, D.S., Clapham, P.J., Cooke, J., Donovan, G.P., Urbán, J. & Zerbini, A.N. 2013. Balaenoptera physalus. The IUCN Red List of Threatened Species 2013: e.T2478A44210520 [Accessed 14 January 2016]http://dx.doi.org/10.2305/IUCN.UK.2013-1.RLTS.T2478A44210520.en
      109. Sieben, C. and J. Gascoine, 2016. Euronor and Compagnie des Pêches St Malo cod and haddock fishery. Year 4 Surveillance Report. November 2016, 20pp https://fisheries.msc.org/en/fisheries/compagnie-des-peches-saint-malo-and-euronor-cod-and-haddock/

      110. Skjoldal, H.R. 2005. Marine Protected Areas in Norway. Institute of Marine Research. Norway. http://www.irm.no
      111. Southall, T., Medley, P., Honneland, G., MacIntyre, P. and Gill, M. 2010. MSC Public Certification Report for Barents Sea Cod & Haddock Fisheries. Food Certification International Ltd. / Marine Stewardship Council, November 2010. 195 pp.http://www.msc.org/track-a-fishery/certified/north-east-atlantic/barents-sea-cod-and-haddock/assessment-downloads-1/Public_Certification_Report_-_Final_-_BSCH.pdf
      112. Stevens, J., Fowler, S.L., Soldo, A., McCord, M., Baum, J., Acuña, E., Domingo, A. & Francis, M. 2006. Lamna nasus. The IUCN Red List of Threatened Species 2006: e.T11200A3261697 [Accessed 14 January 2016]http://dx.doi.org/10.2305/IUCN.UK.2006.RLTS.T11200A3261697.en
      113. The Fish Site, 2013. Norwegian-Russian Cod Quota Decreases for 2014, 16 October 2013 [Accessed 22 November 2013]http://www.thefishsite.com/fishnews/21525/norwegianrussian-cod-quota-decreases-for-2014
      114. UnderCurrentNews, 2014. Norway, Russia set Barents Sea cod, capelin, haddock TACs. Published online at 10 October 2014.http://www.undercurrentnews.com/2014/10/10/norway-russia-set-barents-sea-cod-tac-at-894000t/
      115. Wood, LJ, 2007. MPA Global: A database of the world's marine protected areas. Sea Around Us Project, UNEP-WCMC & WWF.http://www.mpaglobal.org
      References

        Comments

        This tab will disappear in 5 seconds.

        Comments on:

        Atlantic cod - Barents Sea, Norway/Russia, Russian Federation, Bottom trawls

        comments powered by Disqus