IDENTIFICATION

SCIENTIFIC NAME
Thunnus albacares

SPECIES NAME(S)
Yellowfin tuna

COMMON NAMES
Yellowfin tuna

STOCK IDENTIFICATION
Despite the identification of distinct spawning grounds within the Atlantic Ocean, observed transatlantic movements and catch data suggest the existence of a unique stock which is used for stock assessment purposes (ICCAT, 2011). A new research study about the genetic variation in the region is being developed (Antoni et al., 2014).

ASSESSMENT

Strengths
Managers have adhered to scientific advice. The stock assessment (2011) indicated that maintaining catches at current levels (110,000 t) would allow the population to remain healthy through 2024. The International Commission for the Conservation of Atlantic Tunas (ICCAT) set a total allowable catch (TAC) at this level starting in 2013. Yellowfin tuna are included in a multi-year conservation and management plan for bigeye tuna.

Weaknesses
There are no formally adopted target or limit reference points. There is no harvest control rule in place, although the framework for one has been adopted. The population has been decreasing for over two decades and under target levels since 2009, but fishing mortality rates appear to be sustainable (although some model runs indicated it was not). It has also been recommended that if measures which are effective at reducing FAD-related mortality for small yellowfin tuna were implemented, the long-term yield would be improved. No measures have yet been adopted by ICCAT. An observer program is in place, but required coverage rates (all fleets) (5%) are very low. Catch and catch-at-size data needs to be reported at a smaller scale, data on present samples of size frequency data needs to be recovered and identifying ways of improving catch estimates from logbook data are all needed.

The population has been decreasing for over two decades and under target levels since 2009, but fishing mortality rates appear to be sustainable (although some model runs indicated it was not). However, if catches are maintained at the set TAC level the population should recover, thus catches during the next several years should be monitored against to ensure compliance. If catches exceed this TAC and reach 140,000 t or more, the probability of meeting Convention Objectives will fall below 50%.

SCORES

Management Quality:

<table>
<thead>
<tr>
<th>Management Strategy</th>
<th>Managers Compliance</th>
<th>Fishers Compliance</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 6</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Stock Health:

<table>
<thead>
<tr>
<th>Current Health</th>
<th>Future Health</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.8</td>
<td>8.9</td>
</tr>
</tbody>
</table>

FIPS
No related FIPs

MSC
Southeast US North Atlantic big-eye tuna and yellowfin tuna: Withdrawn

RECOMMENDATIONS

CATCHERS & REGULATORS

1. Ensure member countries comply with all conservation and management measures (CMMs) of the International Commission for the Conservation of Atlantic Tunas (ICCAT), including measures aimed at both target and bycatch species, and all other mandated obligations. Member countries must make information on monitoring and compliance with all ICCAT obligations publicly available, including actions being taken to address any identified non-compliance with ICCAT CMMs. Ensure compliance with the current total allowable catch (TAC) for yellowfin tuna.

2. Promote the adoption by the ICCAT and member countries of precautionary management measures, including target and limit biological reference points, harvest control rules, increased observer coverage for all fisheries, national management measures and monitoring efforts adequate to ensure harvest strategy objectives are being met. Promote the adoption of management measures aimed at reducing mortality rates of juvenile yellowfin tuna caught in purse seine sets made on fish aggregating devices (FADs).

3. Improve data collection and reporting to ensure complete data sets (i.e., catches, effort, size), which are needed for robust stock assessments. For example, catch and catch-at-size data needs to be reported at a smaller scale, data on present samples of size frequency data needs to be recovered and identifying ways of improving catch estimates from logbook data are all needed.

4. Conduct studies, increase monitoring and publish information to assess
longline interactions with protected, endangered and threatened (PET) and other bycatch species. Identify and mandate best practices bycatch mitigation techniques. Demand compliance with ICCAT management measures prohibiting the retention of oceanic whitetip, silky, thresher and hammerhead sharks.

RETAILERS & SUPPLY CHAIN
1. Encourage the International Commission for the Conservation of Atlantic Tunas (ICCAT) and individual member countries to adopt precautionary and ecosystem-based management measures. Demand that member countries comply with all ICCAT’s Conservation and Management Measures.
2. Explore implementation of control documents to ensure supplier compliance with ICCAT conservation and management measures (CMMs) (e.g. around bycatch) such as recording and reporting interactions, use of detaching devices and line cutters for sea turtles, sea bird mitigation measures and prohibition on retaining silky, oceanic whitetip, hammerhead and thresher sharks. Source from vessels registered on the International Seafood Sustainability Foundation (ISSF) Proactive Vessel Register (PVR).
3. Encourage the ICCAT and member countries to conduct studies, increase monitoring and publish information to assess longline interactions with protected, endangered and threatened (PET) and other bycatch species. Explore opportunities to support studies and data gathering.
4. Contact SFP to learn more about fishery improvement projects (FIPs) and SFP’s Supplier Roundtables.